Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions.
نویسندگان
چکیده
OBJECTIVE Degeneration of chronically demyelinated axons is a major cause of irreversible neurological decline in the human central nervous system disease, multiple sclerosis (MS). Although the molecular mechanisms responsible for this axonal degeneration remain to be elucidated, dysfunction of axonal Na+/K+ ATPase is thought to be central. To date, however, the distribution of Na+/K+ ATPase has not been studied in MS lesions. METHODS The percentage of axons with detectable Na+/K+ ATPase was determined in 3 acute and 36 chronically demyelinated lesions from 13 MS brains. In addition, we investigated whether postmortem magnetic resonance imaging profiles could predict Na+/K+ ATPase immunostaining in a subset (20) of the chronic lesions. RESULTS Na+/K+ ATPase subunits alpha1, alpha3, and beta1 were detected in the internodal axolemma of myelinated fibers in both control and MS brains. In acutely demyelinated lesions, Na+/K+ ATPase was detectable on demyelinated axolemma. In contrast, 21 of the 36 chronic lesions (58%) contained less than 50% Na+/K+ ATPase-positive demyelinated axons. In addition, magnetic resonance imaging-pathology correlations of 20 chronic lesions identified a linear decrease in the percentage of Na+/K+ ATPase-positive axons and magnetization transfer ratios (p < 0.0001) and T1 contrast ratios (p < 0.0006). INTERPRETATION Chronically demyelinated axons that lack Na+/K+ ATPase cannot exchange axoplasmic Na+ for K+ and are incapable of nerve transmission. Loss of axonal Na+/K+ ATPase is likely to be a major contributor to continuous neurological decline in chronic stages of MS, and quantitative magnetization transfer ratios and T1 contrast ratios may provide a noninvasive surrogate marker for monitoring this loss in MS patients.
منابع مشابه
Does the extent of axonal loss and demyelination from chronic lesions in multiple sclerosis correlate with the clinical subgroup?
OBJECTIVE To determine non-invasively the relation between the degree of axonal loss and the extent of demyelination in chronic lesions visible on MRI in patients with different subgroups of clinically definite multiple sclerosis using (1)H magnetic resonance spectroscopy ((1)H MRS) and magnetisation transfer imaging (MT). Conventional MRI is unable to differentiate between the various patholog...
متن کاملMitochondrial changes within axons in multiple sclerosis.
Multiple sclerosis is the most common cause of non-traumatic neurological impairment in young adults. An energy deficient state has been implicated in the degeneration of axons, the pathological correlate of disease progression, in multiple sclerosis. Mitochondria are the most efficient producers of energy and play an important role in calcium homeostasis. We analysed the density and function o...
متن کاملRelationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملThe role of Na+-K+-ATPase in the basic and rate-dependent properties of isolated perfused rabbit Atrioventricular Node
Introduction: Ouabaine is a well-known atrioventricular (AV) node depressant agent, but its effects on functional properties of the AV node have not been cleared. The aim of the present study was to determine how ouabaine administration modifies the rate-dependent properties of the AV node. Methods: Selective stimulation protocols were used to quantify independently electrophysiological prop...
متن کاملNodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.
Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known abo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of neurology
دوره 63 4 شماره
صفحات -
تاریخ انتشار 2008